THE ESSENTIAL DIMENSION OF A g-DIMENSIONAL COMPLEX ABELIAN VARIETY IS 2g

نویسنده

  • PATRICK BROSNAN
چکیده

We compute the Buhler-Reichstein essential dimension of a complex abelian variety using Kummer theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CM Jacobians

1. Complex multiplication. We say an abelian variety A of dimension g over a field K admits sufficiently many Complex Multiplications (smCM) if D = End(A) contains a commutative semi-simple algebra Λ ⊂ D of rank dimQ(Λ) = [Λ : Q] = 2g. In this case we say A is a CM abelian variety. A point z ∈ Ag(k) is called a CM point if z is the moduli point of a polarized abelian variety z = [(A,μ)] such th...

متن کامل

Projective Normality of Abelian Varieties

We show that ample line bundles L on a g-dimensional simple abelian variety A, satisfying h0(A,L) > 2g · g!, give projective normal embeddings, for all g ≥ 1.

متن کامل

0 Abelian Varieties into 2 g + 1 - dim . Linear Systems

We show that polarisations of type (1, ..., 1, 2g + 2) on g-dimensional abelian varieties are never very ample, if g ≥ 3. This disproves a conjecture of Debarre, Hulek and Spandaw. We also give a criterion for non-embeddings of abelian varieties into 2g + 1-dimensional linear systems.

متن کامل

$PI$-extending modules via nontrivial complex bundles and Abelian endomorphism rings

A module is said to be $PI$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this paper, we focus on direct summands and indecomposable decompositions of $PI$-extending modules. To this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...

متن کامل

Shimura Curves Lecture 5: the Adelic Perspective

(2) How to view V (O) = Γ(B,O)\Hg as a moduli space for certain pairs (A, ι), where A is a complex abelian variety of dimension 2g and ι : O ↪→ End(A) is a QM structure. (Here O was assumed to be a maximal order of B. In fact we did not use the maximality in any way. However, later on subtleties will arise when considering non-maximal orders. Just as an example: if O is not maximal, then it is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006